Find coordinates of the points of trisection of the line segment joining points (4, -1) and (-2, -3).
Open in App
Solution
Let P (x1, y1) and Q (x2, y2) are the points of trisection of the line segment joining the given points. ⇒ AP = PQ = QB
Therefore, point P divides AB internally in the ratio 1:2 so using section formula. x=m1x2+m2x1m1+m2andy=m1y2+m2y1m1+m2
In this case (m1=1,m2=2andx1=4,x2=−2,y1=−1,y2=3) x1=1×(−2)+2×41+2,y1=1×(−3)+2×(−1)1+2 x1=−2+83=63=2,y1=−3−23=−53
Therefore, P(x1,y1)=(2,−53)
Point Q divides AB internally in the ratio 2:1 x2=2×(−2)+1×42+1,y1=2×(−3)+1×(−1)2+1 x2=−4+43=0,y2=−6−13=−73 P(x2,y2)=(0,−73)