The correct option is
A −1We have to find the derivative of
tan−1cosx−sinxcosx+sinx with respect to
x.
ddx(tan−1cosx−sinxcosx+sinx)
Let u=cosx−sinxcosx+sinx,f=tan−1(u)
Apply chain rule df(u)dx=dfdu⋅dudx, we get
df(u)dx=ddu(tan−1(u))⋅ddx(cosx−sinxcosx+sinx)
=1u2+1⋅(cosx+sinx)(−sinx−cosx)−(cosx−sinx)(−sinx+cosx)(cosx+sinx)2
=1u2+1⋅−(cosx+sinx)2−(cosx−sinx)2(cosx+sinx)2
=1u2+1⋅−cos2x−sin2x−2cosxsinx−cos2x−sin2x+2cosxsinxcos2x+sin2x+2sinxcosx
=1u2+1⋅−2cos2x−2sin2x1+2sinxcosx
=1u2+1⋅−2(cos2x+sin2x)1+2sinxcosx
=1u2+1⋅−21+2sinxcosx
Substitute u=cosx−sinxcosx+sinx we get
=1(cosx−sinxcosx+sinx)2+1⋅−21+2sinxcosx
=(cosx+sinx)2(cosx−sinx)2+(cosx+sinx)2⋅−21+2sinxcosx
=cos2x+sin2x+2cosxsinxcos2x+sin2x−2cosxsinx+cos2x+sin2x+2sinxcosx⋅−21+2sinxcosx
=1+2cosxsinx1−2cosxsinx+1+2sinxcosx⋅−21+2sinxcosx
=1+2sinxcosx2⋅−21+2sinxcosx
=−1
ddx(tan−1cosx−sinxcosx+sinx)=−1