wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find C1C0+2C2C1+3C3C2+....+nCnCn1=

Open in App
Solution

S=nC1nC0+2nC2nC1+3nC3nC2+......+nnCnnCn1
S=nr=1(rnCrnCr1)........(1)
Now,
nCrnCr1=n!r!(nr)!n!(r1)!(nr+1)!
=(r1)!(nr+1)!r!(nr)!
=(r1)!(nr+1)(nr)!r(r1)!(nr)!
=nr+1r
Hence (1) become
S=nr=1(rnr+1r)
=nr=1(nr+1)
=nr=1n+nr=11nr=1r
=n(1+1+1.....n)+(1+1+1.....n)(1+2+3+....+n)
=n(n)+nn(n+1)2
=(n2+n)n2+n2
=12(n2+n)
nC1nC0+2nC2nC1+3nC3nC2+......+nnCnnCn1=12(n2+n)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Theorem for Any Index
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon