wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx for the following
i) y=tan1(3xx313x2), 13<x<13.
ii) y=sin1(1x1+x), 0<x<1.

Open in App
Solution

i) Given y=tan1(3xx313x2),13<x<13;π6<θ<π6;π2<3θ<π2
Let x=tanθ
y=tan1(3tanθtan3θ13tan2θ)
=tan1(tan3θ)
y=3θ13<x<0
3θ0x<13
x=tanθdx=sec2θdθdθdx=1sec2θ
dydx=3dθdx13<x<0
3dθdx,0x<12
dydx=⎪ ⎪ ⎪⎪ ⎪ ⎪31+x2,13<x<031+x2,0x<13
ii) Given, y=sin1(1x1+x)0<x<1
Differentiate on both sides w.r.t. x
dydx=|1+x|1(1x1+x)22(1+x)2
=2(1+x)(1+x)2.2x(1+x>0)
dydx=1x(1+x)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon