Consider the given equation,
y=sin−1(6x−4√1−4x25)
siny=6x−4√1−4x25
5siny=6x−4√1−4x2
Differentiate both sides with respect to x,
5ddxsiny=ddx(6x−4√1−4x2)
5cosydydx=6.1−4.12√1−4x2ddx(1−4x2)
5cosydydx=6−2√1−4x2.(0−8x)
5cosydydx=6√1−4x2+16x√1−4x2
dydx=cos−1(6√1−4x2+16x5√1−4x2)
Hence, this is the answer.