wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx if
(a) x3+2x2y+3xy2+4y3=5
(b) x=2cos3θ,y=2sin3θ
(c) y=sin1(2x1x2);1x1

Open in App
Solution

(a) x3+2x2y+3xy2+4y3=5
Differentiating both the sides wrt x
3x2+2x2dydx+4xy+6xydydx+3y2+12y2dydx=0
dydx(2x2+6xy+12y2)=(3x2+4xy+3y2)
dydx=(3x2+4xy+3y2)(2x2+6xy+12y2)

(b) x=2cos3θ,y=2sin3θ
dydθ=6sin2θcosθ,dxdθ=6cos2θsinθ
dydx=tanθ

(c) y=sin1(2x1x2);1x1
Let x=sinθ, dxdθ=cosθ
y=sin1(2sinθ1sin2θ)
y=sin1(2sinθcosθ)
y=sin1(sin2θ)sin2θ=2sinθcosθ
y=2θ
dydx=2dθdx=2secθ=2sec(sin1x)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon