wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx, if x=cosθcos2θ, y=sinθsin2θ

Open in App
Solution

Given x=cosθcos2θ …………..(1)
y=sinθsin2θ …………(2)
Differentiating equation (1) & (2) w.r.t. θ.
dxdθ=sinθ+2sin2θ
dydθ=cosθ2cos2θ
Now dydθdxdθ=cosθ2cos2θ2sin2θsinθ.

1204135_1399829_ans_30376381272c464fae939f6b3c9e0574.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon