wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx, if y=(sinx)tanx+(cosx)secx.

A
(sinx)tanx(1+sec2xln(sinx))+(cosx)secx(secxtanx(lncosx1))
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(sinx)tanx(1sec2xln(sinx))+(cosx)secx(secxtanx(lncosx1))
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(sinx)tanx(1sec2xln(sinx))(cosx)secx(secxtanx(lncosx1))
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(sinx)tanx(1sec2xln(sinx))(cosx)secx(secxtanx(lncosx+1))
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (sinx)tanx(1+sec2xln(sinx))+(cosx)secx(secxtanx(lncosx1))
y=(sinx)tanx+(cosx)secx
y=u+v
dydx=dudx+dvdx
u=(sinx)tanx
lnu=tanxlnsinx
14dudx=tanx×cosxsinx+sec2xlnsinx
dudx=(sinx)tanx(1+sec2xlnsinx)
v=(cosx)secxlnv=secxlncosx
1vdvdx=secxtanxlncosx+secxcosx(sinx)
=secxtanx(lncosx1)
dvdx=(cosx)secx(secxtanx(lncosx1))
dydx=(sinx)tanx(1+sec2xlnsinx)+(cosx)secx(secxtanx)
(lncosx1))

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon