Given: y=sec−1(12x2−1),0<x<1√2
⇒secy=(12x2−1)
⇒1cosy=(12x2−1)
⇒cosy=2x2−1
⇒y=cos−1(2x2−1)
Putting x=cosθ
⇒y=cos−1(2cos2θ−1)
⇒y=cos−1(cos2θ)
⇒y=2θ
Putting value of θ=cos−1x, we get,
y=2cos−1x
Differentiating both sides w.r.t. x, we get,
d(y)dx=d(2cos−1x)dx
⇒dydx=2×d(cos−1x)dx
⇒dydx=2(−1√1−x2) [∵(cos−1x)′=−1√1−x2]
⇒dydx=−2√1−x2