wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx if y=tan1(5x+13x6x2).

Open in App
Solution

y=tan15x+13x6x2

tany=5x+13x6x2
differentiating wrt x,
sec2ydydx=(3x6x2)d(5x+1)dx(5x+1)d(3x6x2)dx(3x6x2)2
(1+tan2y)dydx=5(3x6x2)(5x+1)(112x)(3x6x2)2
(1+[5x+13x6x2]2)dydx=155x30x2+5x+60x2+1+12x(3x6x2)2
((3x6x2)2+(5x+1)2(3x6x2)2)dydx=30x2+12x+16(3x6x2)2
dydx=30x2+12x+16(3x6x2)2+(5x+1)2
dydx=30x2+12x+1610+4x10x2+12x3+36x4
dydx=15x2+6x+85+2x5x2+6x3+18x4
This is the required answer as the denominator has no roots.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon