wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx ify=tan1[1+sinx+1sinx1+sinx1sinx]

Open in App
Solution

R.E.F image
Solution -
y=tan1[1+sinx+1sinx1+sinx1sinx]

tany=(1+sinx+1sinx)(1+sinx+1sinx)1+sinx1sinx(1+sinx+1sinx)

tany=1+cosxsinx

secy=2+2cosxsin2x

sec2dydx=sin2x(1+cosx)cosxsin2x

2+2cosxsin2xdydx=sin2xcosxcos2xsin2x

dydx=cosx12+2cosx=1/2(2+2cosx)(2+2cosx)

dydx=12

1100680_1187970_ans_5e7b64a7c8404260828410368b876e40.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon