Simplification of given data
Let u=yx,v=xy and w=xx
Now, u+v+w=ab
Differentiating w.r.t. x
d(u+v+w)dx=d(ab)dx
d(u)dx+d(v)dx+d(w)dx=0 ⋯(i)
(as ab is constant)
Now, we will find the derivative of u,v and w separately.
Finding d(u)dx
u=yx
Taking log both sides,
we get,
logu=log(yx)
logu=x.logy (log(an)=nloga)
Differentiating both sides w.r.t x, we get
d(logu)dx=d(x.logy)dx
d(logu)dx(dudx)=d(x.logy)dx
1u⋅dudx=d(x.logy)dx
Using product Rule : (uv)′=u′v+v′u
1u⋅dudx=dxdx.logy+d(logy)dx⋅x
1u⋅dudx=1.logy+x.d(logy)dy⋅dydx
1u⋅dudx=logy+xy⋅dydx
dudx=u(logy+xydydx)
Substituing u=yx, we get,
dudx=yx(logy+xydydx)
dudx=yxlogy+yx−1.xdydx ⋯(ii)
Finding d(v)dx
v=xy
Taking log both sides,
we get,
logv=log(xy)
logv=y.logx (log(an)=nloga)
Differentiating both sides w.r.t x, we get
d(logv)dx=d(y.logx)dx
d(logv)dv(dvdx)=d(y.logx)dx
1v⋅dvdx=d(y.logx)dx
Using product Rule : (uv)′=u′v+v′u
1v⋅(dvdx)=d(y)dx.logx+d(logx)dx⋅y
1v⋅(dvdx)=dydx.logx+yx
dvdx=v(logx.dydx+xy)
Substituing v=xy, we get,
dvdx=xy(dydxlogx+yx)
dvdx=xylogx.dydx+xy−1.y ⋯(iii)
Finding d(w)dx
w=xx
Taking log both sides, we get,
logw=log(xx)
logw=x.logx (log(an)=nloga)
Differentiating both sides w.r.t x, we get
d(logw)dx=d(x.logx)dx
d(logw)dw(dwdx)=d(x.logx)dx
1w⋅dwdx=d(x.logx)dx
Using product Rule : (uv)′=u′v+v′u
1w⋅(dwdx)=d(x)dx.logx+d(logx)dx⋅x
1w⋅(dwdx)=1.logx+1x.x
dwdx=w(logx+1)
Substituing w=xx, we get,
dwdx=xx(logx+1 ⋯(iv))
Finding dydx
From (i)
d(u)dx+d(v)dx+d(w)dx=0
Substituting the values of (ii), (iii) and (iv) in (i) then we get,
(yxlogy+yx−1.xdydx)+(xylogx.dydx+xy−1.y)+(xx(logx+1))=0
(yx−1.x+xylogx)dydx=−(yxlogy+xy−1.y+xx(logx+1))
dydx=−(yxlogy+xy−1.y+xx(1+logx))(xyx−1+xylogx)