wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx, if yx+xy+xx=ab.

Open in App
Solution

Simplification of given data

Let u=yx,v=xy and w=xx

Now, u+v+w=ab

Differentiating w.r.t. x

d(u+v+w)dx=d(ab)dx

d(u)dx+d(v)dx+d(w)dx=0 (i)

(as ab is constant)

Now, we will find the derivative of u,v and w separately.

Finding d(u)dx

u=yx

Taking log both sides,
we get,
logu=log(yx)

logu=x.logy (log(an)=nloga)

Differentiating both sides w.r.t x, we get

d(logu)dx=d(x.logy)dx

d(logu)dx(dudx)=d(x.logy)dx

1ududx=d(x.logy)dx

Using product Rule : (uv)=uv+vu

1ududx=dxdx.logy+d(logy)dxx

1ududx=1.logy+x.d(logy)dydydx

1ududx=logy+xydydx

dudx=u(logy+xydydx)

Substituing u=yx, we get,

dudx=yx(logy+xydydx)

dudx=yxlogy+yx1.xdydx (ii)

Finding d(v)dx

v=xy

Taking log both sides,
we get,

logv=log(xy)

logv=y.logx (log(an)=nloga)

Differentiating both sides w.r.t x, we get

d(logv)dx=d(y.logx)dx

d(logv)dv(dvdx)=d(y.logx)dx

1vdvdx=d(y.logx)dx

Using product Rule : (uv)=uv+vu

1v(dvdx)=d(y)dx.logx+d(logx)dxy

1v(dvdx)=dydx.logx+yx

dvdx=v(logx.dydx+xy)

Substituing v=xy, we get,

dvdx=xy(dydxlogx+yx)

dvdx=xylogx.dydx+xy1.y (iii)

Finding d(w)dx

w=xx

Taking log both sides, we get,

logw=log(xx)

logw=x.logx (log(an)=nloga)

Differentiating both sides w.r.t x, we get

d(logw)dx=d(x.logx)dx

d(logw)dw(dwdx)=d(x.logx)dx

1wdwdx=d(x.logx)dx

Using product Rule : (uv)=uv+vu

1w(dwdx)=d(x)dx.logx+d(logx)dxx

1w(dwdx)=1.logx+1x.x

dwdx=w(logx+1)

Substituing w=xx, we get,

dwdx=xx(logx+1 (iv))

Finding dydx

From (i)

d(u)dx+d(v)dx+d(w)dx=0

Substituting the values of (ii), (iii) and (iv) in (i) then we get,

(yxlogy+yx1.xdydx)+(xylogx.dydx+xy1.y)+(xx(logx+1))=0

(yx1.x+xylogx)dydx=(yxlogy+xy1.y+xx(logx+1))

dydx=(yxlogy+xy1.y+xx(1+logx))(xyx1+xylogx)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon