Consider the given equation
y=1+2x+3x2+(n−1)n−2
Differentiate Bothe side with respect to x, we get
ddxy=ddx(1+2x+3x2+(n−1)n−2xn−2)
=0+2+6x+(n−1)(n−2)xn−3
dydx=2+6x+(n−1)(n−2)xn−3
If y=3x2+2x then dydx=?