Given : sec(x+y)=xy
Differentiating both sides w.r.t. 𝑥
We get,
ddx(sec(x+y))=ddx(xy)
⇒sec(x+y).tan(x+y).d(x+y)dx=y+xdydx
[∴ddx(secx)=secx.tanx, d(uv)dx=vdudx+udvdx]
⇒sec(x+y).tan(x+y),(1+dydx)=y+xdydx
⇒sec(x+y).tan(x+y).d(x+y)dx=y+xdydx
⇒dydx[sec(x+y).tan(x+y)−x]
=y−sec(x+y).tan(x+y)
⇒dydx=y−sec(x+y).tan(x+y)sec(x+y).tan(x+y)−x
Hence, the value of dydx is
y−sec(x+y).tan(x+y)sec(x+y).tan(x+y)−x