wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx when 𝑥 and 𝑦 are connected by the relation sec(x+y)=xy


Open in App
Solution

Given : sec(x+y)=xy
Differentiating both sides w.r.t. 𝑥
We get,
ddx(sec(x+y))=ddx(xy)
sec(x+y).tan(x+y).d(x+y)dx=y+xdydx
[ddx(secx)=secx.tanx, d(uv)dx=vdudx+udvdx]
sec(x+y).tan(x+y),(1+dydx)=y+xdydx
sec(x+y).tan(x+y).d(x+y)dx=y+xdydx
dydx[sec(x+y).tan(x+y)x]
=ysec(x+y).tan(x+y)
dydx=ysec(x+y).tan(x+y)sec(x+y).tan(x+y)x
Hence, the value of dydx is
ysec(x+y).tan(x+y)sec(x+y).tan(x+y)x




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon