Consider the given equation.
y2=4ax …… (1)
On differentiating both sides w.r.t x, we get
2ydydx=4a ……. (2)
From equations (1) and (2), we get
y2=2ydydxx
2xdydx=y
dydx=y2x
dydx−y2x=0
Hence, this is the answer.
The differential equation of family of curves y2=4a(x+a) is a) y2=4dydx(x+dydx) b) 2ydydx=4a c) yd2ydx2+(dydx)2=0 d) 2xdydx+y(dydx)2−y=0