wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx of (cosx)y=(cosy)x

Open in App
Solution

Given, (cosx)y=(cosy)x
Taking logarithm on both sides, we obtain
ylogcosx=xlogcosy
Differentiating both sides, we obtain
logcosx.dydx+y.ddx(logcosx)=logcosy.ddx(x)+x.ddx(logcosy)
logcosxdydx+y.1cosx.ddx(cosx)=logcosy.1+x.1cosy.ddx(cosy)
logcosxdydx+ycosx.(sinx)=logcosy+xcosy(siny).dydx
logcosxdydxytanx=logcosyxtanydydx
(logcosx+xtany)dydx=ytanx+logcosy
dydx=ytanx+logcosyxtany+logcosx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon