The given function is yx=xy
Taking logarithm on both the sides, we obtain
xlogy=ylogx
Differentiating both sides with respect to x, we obtain
logy.ddx(x)+x.ddx(logy)=logx.ddx(y)+y.ddx(logx)
⇒logy.1+x.1y.dydx=logx.dydx+y.1x
⇒logy+xydydx=logx.dydx+yx
⇒(xy−logx)dydx=yx−logy
⇒(x−ylogxy)dydx=y−xlogyx
∴dydx=yx(y−xlogyx−ylogx)