wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find :
1axbxdx

Open in App
Solution

Consider the given integral.

I=1axbxdx …….. (1)

Let t=1axbx

t=axbx

dtdx=ax(bxlogeb)+bx(axlogea)

dtdx=(logebaxbx+logeaaxbx)

axbxdtlogeb+logea=dx

dt(logeb+logea)t=dx

Therefore,

I=1(logeb+logea)1dt

I=1(logeb+logea)(t)+C

On putting the value of t, we get

I=1(logeb+logea)(1axbx)+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon