∫1sinxcos2xdx
⇒∫sinxsin2xcos2xdx
⇒∫sinxdxcos2x(1−cos2x)
cosx=t
dt=−sinxdx
⇒∫−dtt2(1−t2)
⇒∫−dtt2(1−t)(1+t)
⇒−1t2(1−t)(1+t)=At2+B1−t+C1+t2
−1=A(1−t2)+B(1+t)t2+C(1−t)t2
Comparing coefficients
−1=A+0+0⇒A=−1
0=−A+B+C
0=B−C⇒B=C
0=−(−1)+B+B
B=−1/2=C
⇒∫−1x2dt−∫dt2(1−t)−∫dt2(1+t)
⇒t−1+ln(1−t)2−ln(1+t)2+c.