wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find 1sinxcos2xdx.

Open in App
Solution

1sinxcos2xdx
sinxsin2xcos2xdx
sinxdxcos2x(1cos2x)
cosx=t
dt=sinxdx
dtt2(1t2)
dtt2(1t)(1+t)
1t2(1t)(1+t)=At2+B1t+C1+t2
1=A(1t2)+B(1+t)t2+C(1t)t2
Comparing coefficients
1=A+0+0A=1
0=A+B+C
0=BCB=C
0=(1)+B+B
B=1/2=C
1x2dtdt2(1t)dt2(1+t)
t1+ln(1t)2ln(1+t)2+c.

1126226_1288433_ans_c57df1b3d18743a78a0658a7a6c0bb0c.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon