The correct option is
C 52(x+1)−11(ln(|x+3|)−ln(|x+1|))4∫3x−2(x+1)2(x+3)dx
3x−2(x+1)2(x+3)=Ax+1+B(x+1)2+Cx+3
⇒3x−2=A(x+1)(x+3)+B(x+3)+C(x+1)2
⇒3x−2=(A+C)x2+(4A+B+2C)x+3A+3B+C
On comparing both sides we get
A+C=0⇒A=−C ---(i)
4A+B+2C=3
⇒−4C+B+2C=3
⇒B−2C=3 ---(ii)
and 3A+3B+C=−2
⇒−3C+3B+C=−2
⇒3B−2C=−2 ---(iii)
on subtracting (iii) from (ii) we get
−2B=5
⇒B=−52
from (ii) B−2C=3
⇒2C=B−3
⇒2C=−52−3
⇒c=−114
and A=−C=114
Now, ∫3x−2(x+1)2(x+3)dx=114∫dxx+1−52∫dx(x+1)2−114∫dxx+3
=114ln|x+1|+52(x+1)−114ln|x+3|+c
=52(x+1)−11(ln|x+3|−ln|x+1|)4+c