wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find x2+1x25x+6dx.

Open in App
Solution

We are given that,
I=(x2+1)(x25x+6)dx

=(x25x+6+5x5)x25x+6dx

I=(x25x+6x25x+6)dx+(5x5x25x+6)dx

I=dx+5x5x25x+6dx

Let I1=dx=x+C1,C1R

& I2=5x5x25x+6dx.

I2=52(2x5)+152(x25x+6)dx
So, I2=52(2x5)(x25x+6)dx+152dxx25x+6

Let I3=52(2x5)(x25x+6=52ln|x25x+6|+C3,C3R

& I4=152dxx25x+6

I4=152dx(x52)2(32)2

So, I4=152⎢ ⎢ ⎢ ⎢ ⎢ ⎢12(152)loge∣ ∣ ∣ ∣x52132x52+132∣ ∣ ∣ ∣+C4⎥ ⎥ ⎥ ⎥ ⎥ ⎥ C4R

So, I=I1+I2

where I2=I3+I4

I2=52ln|x25x+6|+C3+152(213)loge2x5132x5+13+C4

I=x+C1+52ln|x25x+6|+152×113loge2x5132x5+13+C2

Where C2=C3+C3

I=x+52ln|x25x+6|+1526loge2x5132x5+13+C

where CR & C=C1+C2

x2+1x25x+6dx=x+52ln|x25x+6|+1526loge2x5132x5+13+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon