Consider the given function:
I=∫1x(x3+1)2dx
=∫x2x3(x3+1)2dx
letx3=t
3x2dx=dx
=13∫1t(t+1)2dt
weknowthat
1t(t+1)2=At+Bt+1+C(t+1)2
1t(t+1)2=A(t+1)2+B(t+1)+C(t)t(t+1)2
1=A(t+1)2+B(t+1)+C(t)
putt=−1
1=A.0+B.(−1).0+C(−1)=−1
putt=0
1=A+B.(0)+C.(0)=1
Hence this is the answer.