wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find cos2xsinxdx

A
12log1+1tan2x11tan2x122+1tan2x21tan2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12log1+1tan2x11tan2x122+1tan2x21tanx+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12log1+1tan2x11tan2x122+1tan2x21tan2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12log1+1tan2x1+1tan2x122+1tan2x21tan2x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 12log1+1tan2x11tan2x122+1tan2x21tanx+C
cos2xsinx=1+tan2x1+tan2xsinxdx=1+tan2xsecxsinxdx=1tan2xtanxdx=1tan2xtanx(1+tan2x)dec2xdx=1tan2xtan2x(1+tan2x)tanxsec2xdx
Let 1tan2x=1tan2x=t2
Differentiate both sides with respect to x
2tanxsec2xdx=2tstI=t(1t2)(2t2)tdt=t2(1t2)(2t2)dt
Let
t2(1+t2)(2+2)=At+B1t2+Ct+D2t2t2(1t2)(2t2)=At(2t2)+B(2t2)+Ct(1t2)+D(1t2)(1t2)(2t2)t2=2AtAt2+2BBt2+CtCt3+DDt2t2=t3(A+C)t2(B+D)+(2A+C)t+2B+D
Equating co-efficient both sides we get
A+C=0B+D=12A+C=02B+D=0
Solving above equation
A=0C=0B=1D=2
R=11t2dt212t2dt=12log|1+t1t|222log|2+t2t|+C=12log|1+1tan2x11tan2x|12log|2+1tan2x21tan2x|+C



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon