The correct option is
B 12log∣∣∣1+√1−tan2x1−√1−tan2x∣∣∣−1√2∣∣∣√2+√1−tan2x√2−√1−tanx∣∣∣+C∫√cos2xsinx=∫√1+tan2x1+tan2xsinxdx=∫√1+tan2xsecxsinxdx=∫1−tan2xtanxdx=∫√1−tan2xtanx(1+tan2x)dec2xdx=∫√1−tan2xtan2x(1+tan2x)tanxsec2xdxLet √1−tan2x=1−tan2x=t2
Differentiate both sides with respect to x
−2tanxsec2xdx=2tstI=−∫t(1−t2)(2−t2)tdt=−∫t2(1−t2)(2−t2)dt
Let
⇒t2(1+t2)(2+2)=At+B1−t2+Ct+D2−t2⇒t2(1−t2)(2−t2)=At(2−t2)+B(2−t2)+Ct(1−t2)+D(1−t2)(1−t2)(2−t2)⇒t2=2At−At2+2B−Bt2+Ct−Ct3+D−Dt2⇒t2=−t3(A+C)−t2(B+D)+(2A+C)t+2B+D
Equating co-efficient both sides we get
A+C=0B+D=−12A+C=02B+D=0
Solving above equation
A=0C=0B=1D=−2
R=∫11−t2dt−2∫12−t2dt=12log|1+t1−t|−22√2log|√2+t√2−t|+C=12log|1+√1−tan2x1−√1−tan2x|−1√2log|√2+√1−tan2x√2−√1−tan2x|+C