The correct option is
B n2+1Weneed to find value of limx→0sin2(nx)+x2x2
Divided by highest denominator (divide by x2)
Limit is equal to =limx→0[sin2(nx)x2+x2x2]
=limx→0sin2(nx)x2+1
sin2(nx)x2=(sin(nx)x)2
=limx→0(sin(nx)x)2+1
Apply L' Hospital Rule
=limx→0(cos(nx)n1)2+1
=limx→0(ncos(xn))2+1
Put the value x=0
=(ncos(0⋅n))2+1
=n2+1