2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative of Standard Functions
Find lim x→...
Question
Find
lim
x
→
1
f
(
x
)
, where
f
(
x
)
=
{
x
2
−
1
,
−
x
2
−
1
,
x
≤
1
x
>
1
Open in App
Solution
Finding limit at
x
=
1
l
i
m
x
→
1
−
f
(
x
)
=
l
i
m
x
→
1
+
f
(
x
)
=
l
i
m
x
→
1
f
(
x
)
l
i
m
x
→
1
−
f
(
x
)
=
l
i
m
x
→
0
x
2
−
1
=
1
2
−
1
=
0
l
i
m
x
→
1
+
f
(
x
)
=
l
i
m
x
→
1
(
−
x
2
−
1
)
=
(
−
1
)
2
−
1
=
−
1
−
1
=
−
2
∴
l
i
m
x
→
1
+
f
(
x
)
≠
l
i
m
x
→
1
−
f
(
x
)
∴
left hand limit and right limit are not equal
Hence
l
i
m
x
→
1
f
(
x
)
does not exist
Suggest Corrections
0
Similar questions
Q.
Find
lim
x
→
1
f
(
x
)
,
where
f
(
x
)
=
{
x
2
−
1
,
x
≤
1
−
x
2
−
1
,
x
>
1
Q.
Find
lim
x
→
1
f
x
, if
f
x
=
x
2
-
1
,
x
≤
1
-
x
2
-
1
,
x
>
1
Q.
Find
f
(
x
), where
f
(
x
) =