We have,
limx→π6⎛⎜ ⎜⎝√3sinx−cosxx−π6⎞⎟ ⎟⎠
This is the 00 form.
So, apply L-Hospital rule
limx→π6(√3cosx−(−sinx)1−0)
limx→π6(√3cosx+sinx)
=(√3cosπ6+sinπ6)
=(√3×√32+12)
=32+12
=2
Hence, this is the answer.
The general value of x satisfying the equation √3 sin x+cos x=√3 is given by