Find dydx , if x=2cosθ-cos2θand y=2sinθ-sin2θ.
tan3θ2
-tan3θ2
cot3θ2
-cot3θ2
Explanation for the correct option:
Step 1. Differentiate x with respect to θ
x=2cosθ–cos2θ
⇒dxdθ=-2sinθ+2sin2θ
=2(sin2θ–sinθ)
Step 2. Differentiate y with respect to θ
y=2sinθ–sin2θ
⇒dydθ=2cosθ–2cos2θ
=2(cosθ–cos2θ)
Step 3. Divide dydθ by dxdθ
⇒dydx=dydθdθdx
=2(cosθ–cos2θ)2(sin2θ–sinθ)
=(cosθ–cos2θ)(sin2θ–sinθ)
=(cosθ–cos2θ)(-sinθ+sin2θ)
=2sin3θ2sinθ22cos3θ2sinθ2 ∵sinθ-sinϕ=2cosθ+ϕ2sinθ-ϕ2 ⇒dydx=tan(3θ2) ∵cosθ-cosϕ=2sinθ+ϕ2sinθ-ϕ2
Hence, Option ‘A’ is Correct.