wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

(i) y=xcos x+sin xtan x
(ii) y=xx+sin xx

Open in App
Solution

i We have, y=xcosx+sinxtanxy=elogxcosx+elogsinxtanx y=ecosx logx+etanx log sinx
Differentiating with respect to x using chain rule,
dydx=ddxecosx logx+ddxetanx log sinx =ecosx logxddxcosx logx+etanx log sinxddxtanx log sinx =elogxcosxcosxddxlogx+logxddxcosx+elogsinxtanxtanxddxlog sinx+log sinxddxtanx =xcosxcosx1x+logx-sinx+sinxtanxtanx1sinxddxsinx+log sinxsec2x =xcosxcosxx-sinx logx+sinxtanxtanx1sinxcosx+sec2x log sinx =xcosxcosxx-sinx logx+sinxtanx1+sec2x log sinx

ii We have, y=xx+sinxxy=elogxx+elogsinxxy=ex logx+ex log sinx
Differentiating with respect to x using chain rule and product rule,
dydx=ddxex logx+ddxex log sinx =ex logxddxx logx+ex log sinxddxx log sinx =exlogxxddxlogx+logxddxx+elogsinxxxddxlog sinx+log sinxddxx =xxx1x+logx1+sinxxx1sinxddxsinx+log sinx =xx1+ logx+sinxxx1sinxcosx+ log sinx =xx1+ logx+sinxxx cotx+ log sinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 6
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon