wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

y=sin x sin 2x sin 3x sin 4x

Open in App
Solution

We have, y=sinx sin2x sin3x sin4x ...i
Taking log on both sides,
logy=logsinx sin2x sin3x sin4xlogy=logsinx+logsin2x+logsin3x+logsin4x
Differentiating with respect to x using chain rule,
1ydydx=ddxlogsinx+ddxlogsin2x+ddxlogsin3x+ddxlogsin4x1ydydx=1sinxddxsinx+1sin2xddxsin2x+1sin3xddxsin3x+1sin4xddxsin4x1ydydx=1sinxcosx+1sin2xcos2xddx2x+1sin3xcos3xddx3x+1sin4xcos4xddx4x1ydydx=cotx+cot2x2+cot3x3+cot4x4dydx=ycotx+2cot2x+3cot3x+4cot4xdydx=sinx sin2x sin3x sin4xcotx+2cot2x+3cot3x+4cot4x Using equation i

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 6
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon