wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

y=tan xlog x+cos2 π4

Open in App
Solution

We have, y=tanxlogx+cos2π4 y=elogtanxlogx+cos2π4y=elogx log tanx+cos2π4
Differentiating with respect to x using chain rule,
dydx=ddxelogx log tanx+ddxcos2π4 =elogx log tanxddxlogx log tanx+0 =elogtanxlogxlogxddxlog tanx+log tanxddxlogx =tanxlogxlogx1tanxddxtanx+log tanx1x =tanxlogxlogx1tanxsec2x+log tanxx =tanxlogxlogxsec2xtanx+log tanxx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon