Find each of the following products:
(x4+1x4)×(x+1x)
(x4+1x4)×(x+1x)=x4(x+1x)×1x4(x+1x)=x4×x+x4×1x+1x4×x+1x4×1x=x5+x3+1x3+1x5
Find in each case, the remainder when (i) x4−3x2+2x+1 is divided by x - 1 (ii) x3+3x2−12x+4isdividedbyx−2 (iii) x4+1isdividedbyx+1.