The correct option is
B ¯¯¯r=(3+2λ)¯i+(1−7λ)¯j+(2+4λ)¯¯¯kGiven line is passing through A(3,1,2)
So position vector of line be
→a=3^i+^j+2^k
So eq of line become
→r=→a+λ→b
line is perpendicular to
→r=(1+λ)^i+(2+2λ)^j+(3+3λ)^k
→r=^i+2^j+3^k+λ(^i+2^j+3^k)
normal vector of above line
→n1=^i+2^j+3^k
line is also perpendicular to
→r=−3λ^i+2λ^j+5λ^k
→r=λ(−3^i+2^j+5^k)
normal vector of above line
→n2=−3^i+2^j+5^k
line is perpendicular to both lines so
→b=→n1×→n2
→b=∣∣
∣
∣∣^i^j^k123−325∣∣
∣
∣∣
→b=^i(10−6)−^j(5+9)+^k(2+6)
→b=4^i−14^j+8^k
So required line of eq
→r=3^i+^j+2^k+λ(4^i−14^j+8^k)
→r=3^i+^j+2^k+2λ(2^i−7^j+4^k)
→r=3^i+^j+2^k+λ(2^i−7^j+4^k)
→r=(3+2λ)^i+(1−7λ)^j+(2+4λ)^k
This is required eq