Find equation of the line which is equidistant from parallel lines 9x+6y−7=0 and 3x+2y+6=0
The equation of parallel lines 9x+6y−7=0 and 3x+2y+6=0
Let A(x1,y1) be any point which is equidistnt from the parallel lines.
∴ ∣∣ ∣∣9x1+6y1−7√(9)2+(6)2∣∣ ∣∣=∣∣ ∣∣3x1+2y1+6√(3)2+(2)2∣∣ ∣∣
⇒ 9x1+6y1−73√13=±3x1+2y1+63√13
Taking 9x1+6y1−73√13=−3x1+2y1+6√13
⇒ 9x1+6y1−7=−9x1−6y1−18
⇒ 18x1+12y+11=0
Thus equation of required line is
18x+12y+11=0