Given ,
f(x)=√4x+44x+3log4(1−x)
Differentiate both side w.r. to x , we get
f′(x)=12√4x+44xddx(4x+44x)+3ddx1log4(1−x)
=12√4x+44x(4xloge4+44xloge44)+3(−1)1(log4(1−x))2ddxlog4(1−x)
=4xloge4+44xloge442√4x+44x−3(log4(1−x))2×1(1−x)loge4ddx(1−x)
=4xloge4+44xloge442√4x+44x−3(log4(1−x))2×1(1−x)loge4(−1)
=4xloge4+44xloge442√4x+44x+3(log4(1−x))2×1(1−x)loge4