As, x is in quadrant II,
π 2 <x<π π 4 < x 2 < π 2
Therefore, sin x 2 , cos x 2 and tan x 2 are all positive.
It is given that,
sinx= 1 4
So,
cos 2 x=1− sin 2 x =1− ( 1 4 ) 2 =1− 1 16 = 15 16
Therefore,
cos 2 x= 15 16 cosx=± 15 4 =− 15 4
As x is in quadrant III, cosx is negative.
For sin x 2 ,
sin 2 x 2 = 1−cosx 2 = 1−( − 15 4 ) 2 = 4+ 15 8 × 2 2 sin x 2 = 8+2 15 4
Now, for cos x 2
cos 2 x 2 = 1+cosx 2 = 1+( − 15 4 ) 2 = 4− 15 8 × 2 2 cos x 2 = 8−2 15 4 ( ∵cos x 2 is positive )
For tan x 2 ,
tan x 2 = sin x 2 cos x 2 = 8+2 15 4 8−2 15 4 = 8+2 15 8−2 15
Simplify the above equation,
tan x 2 =4+ 15
Hence, the respective values of sin x 2 , cos x 2 and tan x 2 are 8+2 15 4 , 8−2 15 4 and 4+ 15 .