Let the numbers be a,ar,ar2,ar3
∴a2(r2+r4)=250 or a2r2(1+r2)=250
and G1G4=a2a3=α where α is greater root of
(2+log10x)log10x
=log10(10−3)−8/3=log10(108)=8
or If log10x=t then t2+2t−8=0
∴t=−4,2
log10x=−4,2 or log10x=10−4,102=1104,100
∴α=100 being greater root
a2r3=100 and a2r2(1+r2)=250
and Dividing, 1+r2r=52 or 2r2−5r+2=0
∴r=2,12
Choosing r=2 we get from (1), a2.4×5=250
∴a2=25/2 and r2=2
Hence the four numbers are
a,ar,ar2,ar3 i.e., 5√2,5√2,10√2,20√2
Choosing r=12, we will get the same numberss in reverse order.