wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.

Open in App
Solution

Let a be the first term and r be the common ratio of the G.P.

a1 = a, a2 = ar, a3 = ar2, a4 = ar3

By the given condition,

a3 = a1 + 9

ar2 = a + 9 … (1)

a2 = a4 + 18

ar = ar3 + 18 … (2)

From (1) and (2), we obtain

a(r2 ­­– 1) = 9 … (3)

ar (1– r2) = 18 … (4)

Dividing (4) by (3), we obtain

Substituting the value of r in (1), we obtain

4a = a + 9

⇒ 3a = 9

a = 3

Thus, the first four numbers of the G.P. are 3, 3(– 2), 3(–2)2, and 3­(–2)3 i.e., 3¸–6, 12, and –24.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon