Find four numbers in AP whose sum is 28 and the sum of whose squares is 216.
Let the four numbers be (a−3d),(a−d),(a+d) and (a+3d).
Given:
1. Their sum is 28
(a−3d)+(a−d)+(a+d)+(a+3d)=28
⇒4a=28
∴a=7.
2.Their sum of square 216
(a−3d)2+(a−d)2+(a+d)2+(a+3d)2=216
⇒a2+9d2−6ad+a2+d2−2ad+a2+d2+2ad+a2+9d2+6ad=216
⇒4a2+20d2=216
⇒a2+5d2=54
Putting the value of a
49+5d2=54
5d2=5
d2=1
∴d=±1.
For d=1:
The numbers are 7+3,7+1,7−1,7−3⇒10,8,6,4.
For d=−1:
The numbers are 7+3,7+1,7−1,7+3⇒4,6,8,10.