Let the four numbers in G.P. bear3,ar,ar,ar3.
So product =a4=4096=9×512=8×8×64=84∴a=8.
Sum=8(1r3+1r+r+r3)=85⇒8(r3+1r3)+8(r+1r)−85=0....(1)
Let r+1r=z∴(r+1r)3=z3
or r3+1r3+3r⋅1r(r+1r)=z3∴r3+1r3=z3−3z.
Hence (1) becomes 8(z3−3z)+8z−85=0
or 8z3−16z−85=0...(2)
Put 2z=t∴t3−8t=0 or (t−5)(t2+5t+17)=0∴t=2z=5 or 2z=2(r+1r)=5....(3) .The other factor gives imaginary values.
∴ From (3),2r2−5r+2=0(r−2)(2r−1)=0
∴r=2,12, and a=8 Hence
the four numbers are 1,4,16,64or64,16,4,1.