Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x = sin t, y = cos 2t.
Given, x = sin t, y = cos 2t
Differentiating w.r.t. t, we get
∴ dxdt=cos t and dydt=−(sin 2t)2 ∴ dydx=dydtdxdt=dydt×dydx (∵ dydx=dy/dtdx/dt)=−2sin 2tcos t=−2(2sin t cos t)cos t=−4 sin t(∵ sin 2θ=2 sin θcosθ)