Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x=a(cos t+log tant2), y=a sin t.
Given, x=a(cos t+log tant2)
Differentiating w.r.t. t, we get
dxdt=a{−sin t+1tant2.sec2t2.12} [∵ ddx(log|x|)=1x] =a{−sin t+12sint2 cost2} =a{−sin t+1sin t}=a{1−sin2tsin t} (∵ sin t=2sin t2 cost2)⇒ dxdt=a cos2tsin t (∵ 1−sin2t=cos2t)........(i)Also, y=a sin t ⇒ dydt=a cos t .....(ii)From Eqs. (i) and (ii),∴ dydx=dydtdxdt ⇒ dydx=a cos ta cos2tsin t=tan t