Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x=a(θ−sin θ), y=a(1+cos θ)
Given, x=a(θ−sin θ), y=a(1+cos θ)
Differentiating w.r.t. θ , we get
∴ dxdθ=ddθa(θ−sin θ)=a(1−cos θ) and dydθ=ddθa(1+cos θ)=a(0−sin θ)⇒ dydx=dydθdxdθ=dydθ×dθdx=−a sin θa(1−cos θ)=−2sinθ2cosθ22sin2(θx)=−cot(θ2) ⎡⎣∵sin θ=2sinθ2cosθ21−cos θ=2sin2θ2⎤⎦