Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x=4t, y=4t.
Given, x=4t, y=4t
Differentiating w.r.t, we get dxdt=4 and dydt=4(−1)t−2
dydx=dydtdxdt=−4t−24=−1t2 (∵ dydx=dy/dtdx/dt)