Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x=cos θ−cos 2θ, y=sin θ−sin 2θ.
Given, x=cos θ−cos 2θ, y=sin θ−sin 2θ.
Differentiating w.r.t. θ, we get
∴ dxdθ=ddθ(cos θ−cos 2θ)=−sin θ−(−sin 2θ)2=−sin θ+2 sin 2θ and dydθ=ddθ(sin θ−sin 2θ)=cos θ−(cos 2θ)2=cos θ−2 cos 2θ⇒ dydx=dydθdxdθ=dydθ×dθdx=cos θ−2 cos 2θ2 sin 2θ−sin θ