wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.

x=cos θcos 2θ, y=sin θsin 2θ.

Open in App
Solution

Given, x=cos θcos 2θ, y=sin θsin 2θ.

Differentiating w.r.t. θ, we get

dxdθ=ddθ(cos θcos 2θ)=sin θ(sin 2θ)2=sin θ+2 sin 2θ and dydθ=ddθ(sin θsin 2θ)=cos θ(cos 2θ)2=cos θ2 cos 2θ dydx=dydθdxdθ=dydθ×dθdx=cos θ2 cos 2θ2 sin 2θsin θ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon