Consider the given equation.
x23+y23=a23 ……. (1)
On differentiating both sides w.r.t x, we get
23x23−1+23y23−1dydx=0
23(x−13+y−13dydx)=0
1x13+1y13dydx=0
1y13dydx=−1x13
1y13dydx=−1x13
dydx=−y13x13
dydx=−(yx)13
Hence, this is the answer.