wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx if y=12(1cos t),x=10(tsin t),πx<t<π2.

Open in App
Solution

Given, y=12(1cos t),x=10(tsin t)

Differentiating both equations w.r.t. t, we get

dydt=12(0+sin t) and dxdt=10(1cos t)dydx=dydtdxdt=dydt×dtdx=12 sin t10(1cos t)=12×2 sin (t/2)cos (t/2)10{2 sin2(t/2)}=65cot(t2) ( sin t=2 sin t2 cos tx and cos t=12sin2t2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon