Find dydxin the following questions:
2x+3y=sin y.
Given, 2x+3y= sin y
Differentiating both sides w.r.t. x, we get
ddx(2x+3y)=ddx(siny)
⇒ 2+3dydx=cos ydydx⇒3dydx−cos y−dydx=−2
⇒ (3−cos y)dydx=−2⇒dydx=2cos y−3
2x+3y=sin x.