Find dydxin the following questions:
ax+by2=cos y
Given, ax+by2=cos y
Differentiating both sides w.r.t. x, we get
ddx(ax+by2)=ddx(cos y)
a+2bydydx=−sin ydydx⇒2bydydx+sin ydydx=−a
dydx(2by+sin y)=−a⇒dydx=−a2by+sin y