Find dydxin the following questions:
sin2y+cos xy=k
Given, sin2y+cos xy=k
Differentiating both sides w.r.t. x, we get
ddx(sin2y+cos xy=k)=ddx(k)⇒ ddx(sin2y)+ddx(cos xy)=0
2sin y cos ydydx+(−sin xy)ddx(xy)=0 (Using product ruleddx(f(g(x)))=f′(x)ddxg(x))
⇒ sin 2ydydx−sin xy(xdydx+y.1)=0 (∵ sin 2x=2sin x.cos x)
⇒ sin 2ydydx−x sin xydydx=y sin xy⇒dydx=ysin (xy)sin 2y−xsinxy