wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydxin the following questions:

sin2y+cos xy=k

Open in App
Solution

Given, sin2y+cos xy=k

Differentiating both sides w.r.t. x, we get

ddx(sin2y+cos xy=k)=ddx(k) ddx(sin2y)+ddx(cos xy)=0

2sin y cos ydydx+(sin xy)ddx(xy)=0 (Using product ruleddx(f(g(x)))=f(x)ddxg(x))

sin 2ydydxsin xy(xdydx+y.1)=0 ( sin 2x=2sin x.cos x)

sin 2ydydxx sin xydydx=y sin xydydx=ysin (xy)sin 2yxsinxy


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon