Find dydxin the following questions:
y=sin−1(1−x21+x2),0<x<1.
Substitute x = tan−1x=θ
∴ y=sin−1(1−tan2θ1+tan2θ)=sin−1(cos 2θ)⇒y=sin−1{sin(πx−2θ)}
⇒ y=π2−2θ → y=πx−2tant−1x
Differentiating both sides w.r.t. x, we get
dydx=ddx(π2)−2ddx(tant−1x)
dydx=0−21+x2 ⇒ dydx=−21+x2 (ddxtan−1x=11+x2)